Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner.
نویسندگان
چکیده
The soy isoflavone genistein targets adipose tissue and elicits physiological effects that may vary based on dietary intake. We hypothesized that the adipose effects of genistein are dose and gender dependent. Four-week-old C57BL/6 male and female mice received daily oral doses of genistein (50-200,000 microg/kg.d) or 17beta-estradiol (E2) (5 microg/kg.d) for 15 d or a diet containing 800 ppm genistein. Genistein increased epididymal and renal fat pad and adipocyte size at doses up to 50,000 microg/kg.d or at 800 ppm in the diet in males but not in females. The alteration in adipocity correlated with changes in peripheral insulin resistance. These treatments increased genistein serum concentrations from 35+/-6 to 103+/-26 nM 12 h after treatment and lowered plasma triglycerides and cholesterol levels. The 200,000 microg/kg.d genistein dose decreased adipose tissue weight similarly to E2. This genistein dose down-regulated estrogen receptor (beta more than alpha) and progesterone receptor expression and induced estrogen-dependent adipose differentiation factors; it did not change expression of the minimal consensus estrogen-responsive element in ERE-tK-LUC mice, which was positively modulated in other tissues (e.g. the lung). E2 down-regulated almost all examined adipogenic factors. Gene microarray analysis identified factors in fat metabolism and obesity-related phenotypes differentially regulated by low and high doses of genistein, uncovering its adipogenic and antiadipogenic actions. The lower dose induced the phospholipase A2 group 7 and the phospholipid transfer protein genes; the 200,000 microg/kg.d dose inhibited them. The antiadipogenic action of genistein and down-regulation of adipogenic genes required the expression of ERbeta. In conclusion, nutritional doses of genistein are adipogenic in a gender-specific manner, whereas pharmacological doses inhibited adipose deposition.
منابع مشابه
Genistein and daidzein repress adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells via Wnt/β-catenin signalling or lipolysis.
OBJECTIVES One aspect of the effects of isoflavones against fat deposition might be at least associated with the mechanism by which Wnt/β-catenin signalling inhibits adipocyte differentiation. However, it remains completely unknown as to whether isoflavones might influence Wnt signalling during commitment of pluripotent mesenchymal stem cells (MSCs) to adipose lineages. In the present study, we...
متن کاملEffects of gamma radiation on adipose-derived mesenchymal stem cells of human breast tissue
Background: During radiation therapy, stromal cells surrounding the tumor (e.g mesenchymal stem cells) may affect the treatment outcomes. We aimed to investigate the effects of gamma radiation on the mRNA expression of cytokines, DNA damage and population doubling time (PDT) of adipose-derived mesenchymal stem cells (ASCs). Material and methods: ASCs were enzymatically extracted from breast tis...
متن کاملThe soy isoflavone genistein decreases adipose deposition in mice.
Adipose tissue is responsive to estrogen and expresses both estrogen receptor alpha and beta. To test the hypothesis that the estrogenic soy isoflavone genistein can have effects on adipose tissue, juvenile or adult C57/BL6 mice were ovariectomized and given daily injections of vehicle, 17beta-estradiol (5 microg/kg.d) or genistein (8-200 mg/kg.d) sc for 21-28 d. To test effects of dietary geni...
متن کاملTissue inhomogeneity in proton therapy and investigation of its effects on BRAGG peak by using MCNPX code
Background: Hadron therapy for malignant tumor is becoming increasingly popular. There are many factors which effect on implementation of a proper treatment planning. The purpose of this work is to investigate the inhomogeneity effects as affecting factor on proton range, Full width at half maximum (FWHM) and 20% position of penumbra (P20) by MCNPX code. Materials and Methods: An inhomogeneous ...
متن کاملP-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats
Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 147 12 شماره
صفحات -
تاریخ انتشار 2006